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Abstract

Quadtree representation of matrices offers a homogeneous representation for both

sparse and dense matrices, with advantages for processing on multiprocessors. This paper

offers exact values for the average depth and on the number of nodes in this representation

of some familiar patterned matrices: symmetric, triangular, and banded. It similarly

measures three permutation matrices as comparative examples of non-dense, unpatterned

matrices. Those results are exact values for the shuffle and bit-reversal permutations

raised by the fast Fourier transform, as well as tight bounds on the expected values from

purely random permutations. Two different measures for density and for sparsity are

proposed from these values, and a simple analysis of quadtree matrix addition is given as

an illustration of these measures.
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Recent papers [11, 12] have proposed a homogeneous quadtree representation for

both dense and sparse matrices, which provides a graceful decomposition of algorithms

suitable for scheduling on multiprocessors. Most of the discussion has been directed at

the algorithms, themselves, focusing on the importance for decomposing n x n matrices

gracefully onto p processors for p <<n. Some of these algorithms are outlined at the end

of the next section.

All the results there apply, as well, to sparse matrix techniques, if we can only show

that the quadtree representation is acceptably sparse. That is the goal of this paper.

Section 2 defines the quadtree representation of matrices, structuring dense and sparse

matrices indistinguishably. This homogeneous representation comes at some price, because

above all the scalar entries in a matrix is a large tree of nonterminal nodes, which is

supplanted by addressing hardware in the usual, sequential Von Neumann memory.

Although nontrivial in comparison with constant-time access into sequentially stored

matrices, the additional overhead from these nonterminal nodes is an artificial concern in a

couple of ways. First of all, it may be irrelevant in the algorithms described below, which

typically involve recursive descent. That is, rather than accessing elements of a m:atrix

from the root of the tree (analogously to indexing through a conventional array based from

a single memory address), these algorithms recurse to nested and successively shallower

subtrees, so that an entire path from the root is rarely traversed just to manipulate a single

element.

Secondly, even if the complete path were traversed upon every probe of an array, the

time spent to traverse that path might be recovered in other ways. More specifically, if a

heap were spread across very many memory banks and several processors were performing

similar algorithms on one globally accessible quadtree-matrix (whose nodes mapped across

those banks in a random order), then the aggregate performa:.ice of those processors might

actually improve over correspondingly similar algorithms on matrices stored sequentially.

The improvement arises from the random pattern mitigating the problem of two, or more,

processors falling into the same access pattern and addressing the same banks simulta-

neously and repeatedly. The coincidence of regular access patterns to regularly allocated

arrays, even from regular offsets within different matrices, is likely to become an ever in-

creasing problem with more processors. Randomization available from this kind of heap
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[4] would not prevent the first contention between two algorithms, but it would certainly

help prevent a first from being immediately followed by more. Thus, the tree structure

would allow many coprocessors to run with less memory contention, and to absorb the

cost of repeated path traversals.

Both efficiency of access and sparse matrices are of high interest in parallel processing.

Many caching strategies fail under parallelism, and bus or switch contention compounds

the problem of wait states. Many problems sufficiently large and important enough to

justify parallel computation also exhibit sparseness. Therefore, these results are of great

interest in designing parallel algorithms and parallel computers [2, 8].

It is, therefore, important to measure the costs of large matrices in the quadtree for-

mat. The next eight sections give some answers for familiar matrices [9]; many of them are

characterized by strong patterning. Section 2 offers the definitions and normal forms for

quadtree representation; it also indicates how some parallel algorithms are fitted to this

representation. The next section presents the expected path and exact space measures for

dense and symmetric matrices. Section 4 treats triangular, "clip," and finally banded ma-

trices, the most familiar of sparse matrices. The "shuffle" and "bit-reversal" permutations,

are encountered when studying the fast Fourier transform, are analyzed in Section 5; the

latter, here called the FFT permutation, is the worst case for these measures. Section 6

gives tight bounds on random permutation matrices, and shows them to behave nearly as

badly as the worst case. Based on the foregoing analyses, we propose measures for sparsity

and density in Section 7. As an example of their use, Section 8 offers a worst-case analysis

of the performance of matrix addition. The last section offers conclusions.

Section 2. Quadtree Representation and Algorithms

Dimension refers to the number of subscripts on an array. Order of a square matrix

means the number of its rows or columns when written as the conventional tableau. Simi-

larly, the size of a vector is the number of elements when it is expressed in the conventional

tuple formulation.

Let any d-dimensional array be represented as a 2d-ary tree. Here only matrices and

vectors are considered, where d = 2 suggests quadtrees, and d = 1 suggests binary trees.
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Matrix algorithms will be arranged so that we may (without loss) perceive any nonzero

scalar, z, as a diagonal matrix of arbitrary order, entirely of zeroes except for z's on the

main diagonal; that is, z = [x6i,j]. (This particular compression, however, is ignored in the

analyses of this paper.) Thus, a domain is postulated that coalesces scalars and matrices,

with every scalar-like object conforming also as a matrix of any order. Of particular interest

is the scalar 1, which is at once the unique multiplicative identity for scalar/matrix arith-

metic. The additive identity, 0, is represented by the null pointer, NIL (using PASCAL

notation), which is particularly helpful in reducing dereferencing necessary in manipulating

sparse matrices.

A matrix (of otherwise-known order) is either a 'scalar' or it is a quadruple of four

equally-ordered submatrices. So that this recursive cleaving works smoothly, we embed a

matrix of size n x n in a 2f1g ni x 21ig n1 matrix, justified at the lower, right (southeast)

corner with zero padding to the north and west. Padding with NIL minimizes the space

consumed in padding. The matrix is justified to the southeast, rather than the northwest,

so to help with computation of eliminants [1].

This prescribes a normal form for quadtrees: no scalar entry is ever 0, four quadrants

cannot all be NIL, and if the southwest and northeast are NIL then the northwest and

southeast cannot be the same scalar. Similarly, NIL as a vector refers to the zero vector,

and any non-zero scalar z is interpreted as a vector of arbitrary size, each of whose elements

is z; this normal form for vectors precludes any entry from being 0 and any brothers from

both being NIL or the same scalar.

Inferring the conventional meaning from such a matrix now requires additional in-

formation (viz. its order), but we can proceed quite far without size information; it only

becomes critical upon Input or Output. One must acknowledge that the I/O conversions

are non-trivial algorithms [12], but because they consume little processor resource-and

are restrained, also, by communication bandwidth-we eschew them here. Like floating-

point number conversions, they are an irritating impediment to one who would experiment

with the algorithms discussed below.

A "header" above each matrix quadtree should contain its size, necessary for output

translation and needed for better control of certain algorithms, like pivoting on singular
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matrices. Often, however, its value is not essential to binary operators, especially if con-

formability checks are unnecessary at run time. Here, size is the proper length of the main

diagonal-exclusive of any padding and normalization.

An optional annotation is to include a bit within each pointer, indicating that the

referenced tree structure is to be interpreted as transposed, recursively interchanging

southwest\northeast quadrants upon any access. Call this the transposed flag. With it,

quadtree representation allow transposition of an entire matrix in constant time-at the

cost of building a new reference with that flag inverted. It also indicates how row and

column traversal use the same algorithm: a symmetric-order traversal of the appropriately

projected binary tree. However, unless hardware support is available, testing of this flag

slows dereferencing of every quadrant. Because of this cost, is used in this paper only in

comparing measures for the explicit class of symmetric matrices.

Tree-structured memory is well suited to functional or applicative programming style,

whose only control structure is function invocation and whose only iteration is expressed

through recursion. The recursive definition of a quaternary trees mimics the recursive

structure of programs that manipulate them.

Thus, the algorithm for matrix addition 1111 decomposes naturally into four quad-

rant additions which are separate and independent processes. Because of their mutual

independence, these four are naturally computed in parallel within a shared memory, or

distributed to independent processors with private memory. In the latter case, the tree

structure of the matrix may be better mapped onto a tree of private memories. And the

division extends naturally to 16, 64, 256, etc. processors, or-by splitting the sums in half,

rather than in quarters-to 2, 8, 128 etc. as well. When either addend is NIL, addition

returns a shared reference to the other addend.

The problem of matrix multiplication may be decomposed two ways (again treating

the product as two halves), four ways (the four quadrants of the answer), and eight ways

(the eight quadrant products in Strassen's decomposition [10] of Gaussian matrix multi-

plication.) Whenever a multiplier or multiplicand is NIL, the product is annihilated to

NIL; if either is 1 the product becomes a reference to the other.

Solutions to linear systems and matrix inversion have been reduced to the Pivot Step

algorithm [5], where the "independent" problem of a stable choice for the pivot element
-55



folds naturally onto the tree. The quadtree not only suggests efficient tree-search, but

also it provides the structure upon which to bind decorations (local maxima in a sparse

matrix) that do not change across many pivot steps, thereby t16runcating the full search for

successive pivots.

The remainder of this paper addresses static measures of quadtree representation, only

briefly considering any of the algorithms mentioned above. Some of the efficiencies provided

by normal form, moreover, are ignored, because this paper only considers efficiencies due

to the occurrences of NIL in sparse matrices. It does not analyze, for instance, space

efficiencies due to the representation of a 16 x 16 identity submatrix simply as the scalar 1.

Moreover, even though implicitly shared references are likely to result from many programs,

none of the analyses that follow consider any sharing beyond that explicitly stated and

indicated in the figures. All these measures are, therefore, slightly conservative.

Section 3. Dense and Symmetric Matrices

A matrix is dense if it contains no zero entries. It is symmetric either if it is a non-

zero scalar, or if its northwest and southeast quadrants are symmetric and its northeast

and southwest pointers are transposes of one-another; they share a reference in the tree

representation, except for inverting the "transposed" flag on one. These shared quadrants

are presumed to be dense in the analysis that follows. Both these decompositions are

illustrated in Figure 1.

Let n = 2P, for p an integer, and define the functions SD, mapping p to the number

of nodes (space) necessary to represent a dense n x n matrix, and PD, mapping p to the

average path length in a dense n x n matrix. Similarly, SS maps p to the space necessary

to represent a symmetric n x n matrix, and PS maps p to the average path length in a

symmetric n x n matrix.

Then

SD (0) = 1;

SS (0) = 1;

SD(p +1) = 1 +4SD(p);

Ss(p + 1) = 1 + 2SS(p) + SD(P).
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In the last case, the southwest and northeast quadrants are dense and coincident, and,

together, they only contribute to the space cost but once. Figure 1 shows this sharing,

which requires the use of the optional /it transposed flag. Thence,

P 4P+1 - 1
SD(p)=L4'= 3

i=0

4n 2 - 1
1(n + 1)(n- ).

Ss(P) = 2' - 1P 2 = 3(4P 1) + 2P

i=0 3 i--.=0

= Nn -1)+n= 1(n + 2)(n- 4).

In traditional representations using sequentiality of memory addresses, we expect these

space requirements to be n 2 and (n 2 + n)/2, respectively, although additional information

is needed for a program to attain the second.

Assuming (simplistically) that scalars and nonterminal nodes all take the same space,

we immediately observe a 33% space increase over sequential storage of matrices. In fact,

it is likely that the nonterminal nodes (of four pointers) are larger than terminal nodes (a

single scalar), indicating an additional consideration-the constant of proportionality-to

be considered when comparing different representations. This space difference is probably

closer to 66% for that reason.

The expense to access an individual element is a less critical measure, because most

algorithms do not perform that operation as a primitive fetch from the root of the tree.

Rather, the problem decomposes, so that the fetch is issued only locally, from control

points immediately above the terminal (scalar) nodes. However, it is a cost of interest for

conventional algorithms.

PD(O) = 1;

PD(p + 1) = 1 + P(p) = p + 2 .

Ps(p) = PD(p) = p+ 1 = gn + 1.

Section 4. Triangular, Clip, and Banded Matrices

A triangular matrix either is a non-zero scalar or it decomposes into quadrants, of

which the northwest and southeast are triangular, the northeast is zero, and the southwest
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is dense (or vice versa, but consistently). The parenthetical postscript here is intended

to provide for both "upper" and "lower" triangular, and this recursive definition is to be

unfolded consistently in order to preserve one of those 'shapes.' If interpreted freely, it also

allows other 'folded' shapes, and the following analysis would still apply to them. Again,

Figure 1 illustrates this definition.

A "clip" matrix (Figure 2) looks similar to a triangular matrix, with the role of the

main diagonal replaced by one closer to a corner. A measure of this distance is needed,

characterized by bandwidth, b, where (b < n), a measure of the width of the non-zero

portion of the matrix. In this paper, b will always be 2 ' for some integer w < p = lg n.

When b = 1, a clip matrix has a non-zero entry only in the extreme southwest or extreme

northeast entry (exclusively). When b = n it is a triangular matrix.

An n x n clip matrix of bandwidth b is either a triangular matrix with n = b, or b < n

and it has four quadrants, of which three, including the nort-west and southeast, are zero

and the remaining quadrant is a clip matrix of bandwidth b. Again, the choice of northeast

or southwest for the clip is intended to be made consistently over any unfolding of this

recursive definition; otherwise, strange foldings arise, but their analyses remain correct.

Intuitively, a banded matrix is zero far away from the main diagonal, but relatively

dense in a band of width b from the diagonal. The bandwidth of a matrix, [ai,,], is defined

to be

max{li-jl I aijO}.

This measure is just under half that of a common alternative that is used to give these

forms their Greek names, the full width of the nonzero "band" on either side of-and

including-the main diagonal.

An n x n banded matrix of bandwidth b, for b < n, is either a dense matrix with

b = n, or has northwest and southeast quadrants being banded matrices, and northeast

and southwest quadrants being clip matrices, all of bandwidth b when b < n. Once again, it

is intended that the clipping be in a consistent pattern similar to Figure 2, but even if this

shape is violated, the following analyses still hold. (Dense matrices may be characterized

to be banded in two ways: either with b = n or with b = n - 1. Since we here restrict n

and b to powers of two, however, this confusing redundancy only arises with n = 2 and

either b = 2 or b = 1.)
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As before, define ST mapping p to the number of nodes (space) necessary to represent

a triangular n x n matrix, and PT that maps p to the average path length in a triangular

n x n matrix. (By convention p = Ig n and w = 1g b.) Similarly, SC maps the pair, (p, w),

to the space necessary to represent an n x n clip matrix of bandwidth b, and Pc maps

(p, w) to the average path length in an n x n clip matrix of bandwidth b. SB maps the

pair, (p, w), to the space necessary to represent an n x n banded matrix of bandwidth b,

and PB maps (p, w) to the average path length in an n x n banded matrix of bandwidth b.

For triangular matrices,

ST(p) = Ss(p)

PT(O) = 1;

PT(P+ 1) = 1 + PD(P) + IPT (P) + 0.

At last, we see the effects of avseraging paths across sparsely represented entries! The

path through a non-trivial triangular matrix certainly passes through a root node, and

then into one of the four quadrants with equal probability of 25% . Solving [7, Eqn. 2.751,

PT(p) = L2-+ -E 2 -+ IEi2
i=0 0 0

= 1(p+3-2 -P ) = 1(lgn+3 -1).

As expected, the path length averages to be half the depth of the quadtree, because an

isolated half of the tree is NIL.

For clip matrices,

Pc(p,p) = PT(p);

Pc(p+ 1,w) = 1 + !PC(p,w).

SC(p,p) = ST(p);

Sc(p+ 1,w) = 1 + SC(p,w).

Solving these, we have

Pc(p) = 4 + 1(2-)2[1 + w -2- ]

= 4 ') [ + lgb- ].
9 2 n 2 F

SC(p) = p - wo + 1(4' - 1) + 2w

2 b-1)+b+lg(n).

9



Banded matrices are composed of clip quadrants and dense quadrants as shown in

Figure 2.

PB(p,p) = PD(P);

PB(P+ 1, w) = 1 + IPB(p,w) + 2Pc(p,w).

SB (p, p) = SD(p);

SB(p+ 1,w) = 1 + 2SB(p,w) + 2Sc(p,w).

The general solutions are more complicated:

PB(P, W) = L- + -1[2(w- 1) + (2- P - 2- w) - 2-(w + -)1

- 1 + bJ2(lgb - 1) + ( - - (lgb + 1)];

SB(p,w) = 4(2P+w+l + 2P- w - 22w) + 2[(2P - 2w) - -(p -w)] -

= (2nb-b 2 +- 1) 2[n-b-lg(n)]- .1

These are most interesting only when we consider particular values of w, to reveal space

and average path for specific bandings, e.g. tridiagonal matrices:

SB(p, 0) = 6n - 21gn - 5,

10 3 2
Ps~,0 =3 n 3--2 '

pentadiagonal matrices:

SB(p, 1) = 8n - 21gn - 9,
10 1 10

PB(P, 1) = 3 - ;

3 n 3 n 2

and enneadiagonal matrices:

SB (p, 2) = 13n - 21g n - 26,

PB(p,2) = + 7 100
3 + 3n 2

Alternatively, one might define bandwidth, b, of the form b = 2' - 1 for integers v,

rather than b = 2
w . This allows verification of the above results on tridiagonal matrices

(w = 0; b = 1), and fills in the following values for heptadiagonal matrices (b = 3):

space = 13n - 21g n - 26,
10 7 100

avgpath = 10 +7 10

10



Thus, a tridiagonal matrix that requires space of at least 3n - 2 cells in sequential

storage requires just under twice that as a quadtree, although that proportion falls as the

bandwidth increases. However, expected depth, a reflection of access cost, stays remarkably

constant over various bandwidths.

Section 5. Shuffle and FFT Permutation Matrices

Because any permutation matrix can be represented as a vector of integers (regardless

of whether a vector is represented using sequential memory or as a binary tree), it seems

wasteful even to consider them expanded in a normal matrix representation. They are

studied here because they initially seem to be really sparse, but turn out to be surpris-

ingly expensive. Permutation matrices, particularly those associated with the fast Fourier

transform (FFT) algorithm, have little patterning of zeroes that would allow a collapse

of the quadtree representation. Since, as argued elsewhere [3], patterning is necessary to

sparseness, it will be interesting to see how these measures of space and path length will

compare with those of the highly patterned matrices, already presented.

Because we are more interested in the patterning of zeroes in the permutation matrices

than in any space compression possible from sharing within them, all space analyses will

ignore the possibility of sharing submatrices. Let a permutation-patterned matrix be any

n x n real matrix with n non-zero entries, each row or column of which contains exactly

n - 1 zero entries. It is then reasonable to presume that each non-zero entry is unique in

such a matrix, so that no space savings from sharing of submatrices is possible.

Two permutations, Dp and Sp occur naturally in developing the FFT, which are here

called deal and shuffle, respectively [13]. Multiplying a vector of size n = 2P by Dp on the

left will have the effect of reordering its elements as if the vector were a deck of cards, which

was dealt into two full hands of n/2 cards which were then stacked. A typical layout of Dp

appears below. It is characterized by ones appearing in "knight's moves," first descending

from the far northwest entry to central-east, and also ascending from the far southeast

entry to central-west.

11



1 0 0 0 0 .. 0 ... 0 0

0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0

0p 0 0 0 0 0 . 0 ... 1 000000..00
0 1 0 0 0 ... 0 ... 0 0
0 0 0 1 0 ... 0 ... 0 0

0 0 0 0 0 .- 0 .. 0 1

Sp is the inverse of Dp; Pease [6] names Sp as P, without specifying its order. Multiplying a

vector on the left by S. has the effect of performing a perfect riffle-shuffle on the elements of

the vector. Multiplying on the right by these permutations reorders the columns similarly.

Figure 2 illustrates how Dp can be restructured into Dp+, for p > 0. Do = 1 trivially.

by duplicating and restructuring its quadrants. This observation leads to the following

two recurrences, expressed using the notation, SD, standing for both "shuffle" and "deal,"

distinguished from "symmetric" or "dense." For the space of a shuffle/deal permutation-

patterned matrix:

SSD(0) = 1;

SSD (1) = 3;

SSD(P + 1) = 5 + 2(SD (p) -).

The recurrence for path length is similar. Again, Figure 2 shows how

PSD(0) = 1;

PSD(1) = 3;

PSD(P + 1) = 2 + l(PsD(p,w) - 1).

Solving these recurrences, we find that for p > 0

p-3

SSD(P) = 3(E 2') + 2p- 2 SsD(2) = 3(2 P - 1) = 3(n - 1);
i=o

1
PSD(P) = 3(1 - 2- P) = 3(1 - 1

n

If sharing were allowed, then SSD(P) would collapse to 4p - 2 and 2' x 2' shuffle/deal

matrices for for all integers i < p could be represented in shared space 5p - 3.

12



The FFT permutation (p-bit-reversal), arises as a consequence of Pease's recurrence

[6], given explicitly by Wise [13] who calls it Fp. A key step is to factor out Sp (or Dp) at the

left (respectively, right) end at every step in the recurrence; by associating all these factors

to the left (right) exclusively of other arithmetic, one of the following two factorizations

arises.

,( Sp-2 00

F p Sp P _ 0 S 0-2 ... I;

(Dp_2 0

( DP_2D,,

o Dp-2 0 0 DP I

0 Dp-2)J
Fp is called "bit-reversal" permutation because it exchanges xi and Xb(i) in permut-

ing -, where b is a function on natural numbers less than 2P that reverses the p-bit

strings that represent them. That is, the element of - indexed i = - bj . 23 is in-

dexed F-'=o b,_ . 2' after that permutation. (This fact can be established by a simple

induction on p from either factorization above.) Since b is its -wn inverse, Fp is a symmet-

ric permutation matrix, and so the space measure for Fp that follows might be considerably

reduced by allowing for sharing.

If one considers an n x n FFT permutation-patterned matrix where n = 4 k, then

the 4 2k entries can be perceived as a 2k x 2 k matrix of blocks, each of which is a 21 x 2 k

matrices. Each of those blocks has exactly one element that is non-zero. Thus, its quadtree

is gridded as illustrated in Figure 3.

On drawing the block decomposition described above as a tree, we find that the

quaternary tree is complete for the first k levels, down to the 4 k intermediate notes that

are associated with those blocks. The tree rooted at each intermediate node is metalinear;

that is, each node has at most one son, along the path toward the unique 1 entry. All

other pointers in those subtrees are NIL. Figure 3 also illustrates this tree.

Using the notation from the previous sections, let SF map p onto the space required

to represent an FFT permutation-patterned matrix, and PF map p onto the expected path
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length in an FFT permutation matrix. We have already constrained n - 4k, so p = 2k.

Then

SF(O) = 1;

SF(p + 2) = 1 + 4SF(p) + 2

The last equation arises by adding a root above four FFT permutation-patterned matrices,

and extending each metalinear chain by one level at the bottom. Similarly,

PF(O) = 1;

PF(p + 2) = 1 + PF(p) + 2p+2

Solving these two recurrences,

SF(p) = nlgn + 4n 1
2 3 3

PF(p + 2) = lg n + 4 1
+ 3 3n

The results show that the space needed for an n x n FFT permutation-patterned matrix

grows as 9(nlgn), significantly more than the linear space we get with the vector-of-

indices representation! The average path length, too, is surpiisingly poor, essentially Ign,

reflecting the completeness of the tree to that level, but already more than half that of a

dense matrix!

Theorem 1. The FFT permutation exhibits the worst case measures of any equivalently-

sized permutation-patterned matrix with respect to both space and path length.

Proof is by an induction like those above. The worst case for space requires that each

terminal scalar be isolated in its own subtree, with minimum sharing of its path with any

of its cousins; more sharing would reduce total space. Inspection of the tree in Figure 3

shows that the most space is used by completing the shared tree as high in the tree as

possible, and hanging n independent paths, each of length, (.g n)/2, beneath. The worst

case for average path length occurs when all terminal scalars occur at depth lg n, as they

do in the FFT permutation-pattern, even when the tree for [z6ij] can be represented as

X.
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Section 6. Random Permutations

In this section we find tight bounds for the average time and space required by quadtree

representation of random permutation-patterned matrices. Define P(p) to be a n x n

permutation matrix where n = 2P and p is an integer. As before, we define Sp and

Pp that map p to the average number of nodes (space) necessary to represent an n x n

permutation-patterned matrix and the average path length in an n X n permutation matrix,

respectively, where n = 2P, p an integer. We also define TD (p) to be a complete quadtree

obtained for a 2P x 2P matrix and Tp (p) to be the quadtree that results from representing

a given 2P x 2P permutation matrix P(p).

Theorem 2. If p is even

2P 2-p/2 2 (4- 2P/2 4
Sp ~!) 2e 2P -P2\ p23 -1 I+2-P I+2-P 3.( +2-') + 2r 3

and

Sp(p) _2P( +.78) -

If p is odd

2 (p 1 2-p/ 2+1/2 4. 2-P 12 1 _(P+1)/2 4
SP(P) I+ 2 -P(+ 2 + +2-P 3 . (1 + 2 )2  P 2 C -2j+ /2-2 -3

and

Sp(p) !2P (E+.768) - 4

Proof: We only analyze the case p is even. The case p is odd may be established in

similar fashion. Associate with each node in TD (p) a pair of integers (i, j) where i specifies

the level of the node in TD (p) and j is the left to right order of the node at that level.

Let Np (i, j) be an indicator variable which has value 1 if node (i, j) exists in Tp (p) and

0 otherwise. The expectation of Np(i, j) is the probability that node (i, j) is in Tp(p).

Then,

Sp(p) - -E(Np(i,j)) - pr(node (i,j) is in Tp(p)). (1)

But node (i, j) is in Tp(p) if and only if the submatrix corresponding to that node is not

zero. Let pr(p, i) denote the probability that the submatrix corresponding to a node at

level i is zero. Therefore, the probability that node (i, j) is in Tp(p) is 1 - pr(p,i).

15



Figure 4 illustrates the calculation of pr(p, i). The 2P- ' x 2P- i submatrix corresponding

to node (i, j) has been placed at the lower right corner of matrix P for simplicity; this

matrix must be entirely zero. In order for P to be a permutation matrix exactly 2P'- i rows

of submatrix B must contain l's. This requires 2P-' columns of submatrix A to be all

zero. There are) ways to choose 2P' zero columns in A. For each way to choose

2P- i zero columns in A there are (2P - 2P-i)! ways to place l's in submatrices A and C

such that no two are in the same row or column. Finally, for each way to place l's in A

and C there are 2P-'l ways to place l's in B (these must be placed in the zero columns of

A). Thus, for a node at level i,

P-(p =(2P2 )2P-'(2P - 2P')! (2P - 2P-i)!(2P - 2P-')!
Pr(p' --- 2P! - (2P - 2- 2P-i)!2P!

- (2P - 2P- ' - 0) (2P - 2P-' - 1) (2P - -' - 2) (2P - 2P'' + I)
(2P - 0) (2P - 1) (2P - 2) (2P - 2P-i + 1)

- I-[ 2P-k) 
(2)

k=O

Using (2), the fact that the number of nodes on Level i is 4i, and that the node on Level

0 is always present, we can rewrite (1) as follows:

Sp(p) =1+L4' 1- H (1 2P -k "(3)

i=1 A--O

We now split the sum in (3) into two subsums by cleaving the range of k and derive

upper and lower bounds for each. These will later be added to establish the theorem.

a. Consider the sum

p / 2P'- 2P-'
Upper = 4' 1 - f2( - k)l

i=p/2+1 k=O

ZP -(1 ( 2P'+1
L (4 2P -~ 2P-i=p/2+1

From Lemma 1 of the appendix, 2P- ' > 1 implies

(12- ' P-' 22(,- )

2 -2 P-2 + 1) 2P - 2 - i + 1'
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Therefore, we can bound Upper from above as follows:

P ( 4P-' P=1
Upper <4 2P -2P - - + 1 1 -- +
s=p/2+1 %=p/2+1

I+2- -P 2-i
t=p/ 2 +1 1+-2-P

Making use of the fact that 1/(1 - z) < 1 + x + 2z 2 if 0 < x < 1/2 we can write

Upper < 2 P 2-i 22-2i

S 1 + +2 (1+2-p)2
I=p/ 2 +1

2P (p 2P/2 2.2- P
1+ 2-P 1 + 2-P 3 (1 + 2-p)2

Upper is bounded from below by
2 p -  2P- '

="Upper> E 4i  1 - 1 .2

=i=p/2+l 2

From Lemma 2 of the appendix, 2P- i > 1 implies

2P-' 2P - ' 2 2(Pi) 2 4(p-i)

__2P -- 2P + 22 p+ I

Therefore,

Upper > 41 ( 2 P2i- 2
2 p- 4 1- 1) p2 p  26

-=p/ 2 +1 2 6

b. Now consider the sum

Lower = 4' 1 - I 2P-k)
-i=1 kC=O

p22P -

<E4 i (1 _-2P -1 +1

.. 2 -= -1
P!

Lemma 3 of the appendix asserts that (1 - x)y > e-xV/(-z) for all positive x and y.

Therefore,

p/ 2  p/2-1 - )2P-' (e_.I+2)

Lower <E 44 (i 1 2P I 2

i=1 i=1

2<+2 2 P ( e P -/ 2
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Lower is bounded from below by

Lower > 4i ( 2P

= i -( - 1)2'-').

Lemma 4 of the appendix asserts that (1 - x)y2 < e-' 2Y for all positive z and y. So

P/2 p/2-

Lower > 4 2P +e- + e-' + - e-6) 4e - 16
i 16

2p+ 2 4

3 3

Putting the bounds of Cases a and b together proves the theorem. I

Corollary 1. For n a large power of 2, the average space required for n x n permutation-

patterned matrices is between (n lgn)/2 + .768n - 4/3 and (n lg n)/2 + .983n - 4/3.

Proof: From Theorem 2 the average space gets trapped between the lower bound of

2P(p/2+.768) -4/3 and 2P(p/2+.783) -4/3 and the upper limit of 2P(p/2+4/3-e-1) -4/3

and 2P(p/2 + 7/6 - e- 1 /2) - 4/3 . The result follows. f

Theorem 3. If p is even, then

p.2p/
2  1 1 22-PP (9) 5 p  2p/"-- 2 -: ; 1

2 1-- + +2-P 3+7 Y1-2-P

and

Pp(p) + .862 --

If p is odd, then

P 1 2"+I)/2 1 (2 2-'_
-PP + - 72; 2PIM -2 + - t-+p _+ -21+2-P 3  7(1+2-P)

and

Pp(p) - + .764 -- P
2 3
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Proof: Again we extend only the case where p is even here; the case for odd p is similar.

A path contains one node from each of levels 0,1,2... in TD (p) until a node at some level,

say i, representing an all zero submatrix is reached. Therefore,

p
Pp(p) = L pr(random path is at least i in length).

i=O

But, a path is at least i in length if and only if the level i submatrix is not zero. The

probability that the level i submatrix is zero was found in the previous proof. Using that

probability we have

Pp(p) =l+ 1- 17 (1- 2P-k) (4)
i=1 k=O

As before, we break the sum of (4) into two subsums so that the upper limit of the first

subsum is p/2 and the lower limit of the second subsum is p/2 + 1 and find bounds for

each subsum. Proceeding as in the previous theorem we find that the second subsum is

bounded from above by

Upper < 2P P 4-i
1+2-P F 1 -2

i=p/2 1+2-P
2P 2 ( 2-i

< 4 1+
+ -- I+2-1 1 + 2-P)

i=p/2+1

- 1-+-2-P G - 7 1-+2-P "

The second subsum is bounded from below by

Upper > (2P- 2i - 2
2'p-4 - 2P L 4-' - 0 16-'

i=p/ 2 +1 i=p/2+1 i=p/2+1
1 1 1

>
3 3.2P 15"

The first subsum is bounded from above:
p/2 (1 2 - ' )  :5- t£ p/ < P22

Lower< - -< (-e 2- . _e 2

The first subsum is bounded from below:

p/2

Lower(> le - 2P - 2' > - e- -2 . e 4
m 2

Assembling all the bounds proves the theorem. fl
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Corollary 2. For n a large power of 2 the average path length in an n x n permutation

matrices is between .1lg(n) + .763 and Llg(n) + .966.

Proof: From Theorem 3 the average path length tends to between a lower bound of

p/2 + .862 and p/2 + .764 and an upper bound of p/2 + 4/3 - e- 1 and p/2 + 7/6 - e-'.

The result follows from n = 2P. I

The bounds in both corollaries are tight with respect to their leading coefficients of1

which coincide with those from the FFT permutation. Their second coefficients lie between

55% and 75% of the corresponding coefficients, both 1, from the FFT permutation. While

looser, the two sets of bounds for those second coefficients bracket the same range, which

is strikingly centered on the value 7.

Section 7. Measures of Sparsity and Density

Duff states in his authoritative survey, "In quantitative terms, the density of a matrix

is defined as the percentage of the number of nonzeros to the total number of entries in the

matrix. The term sparsity for the complement of this quantity is rarely used. [3, p. 500]"

Rather, he suggests that sparsity of a matrix has as much to do with the distribution of

zero elements as with their relative population.

We now have seen closed-form results for total-space and for expected-depth for var-

ious patterned and and permutation-patterned matrices. These results are summarized

below in Table 1. His perspective is reflected in these results for the space and access-path

for familiar kinds of matrices represented as quadtrees.

Based on Duff's caveat and these numbers, we present [t12, 131 measures of both density

and sparsity that are motivated by results on quadtrees, but are defined independently of

any particular representation. Their values also appear in Table 1.

Density of a particular matrix is the ratio between the space it occupies, and the space

occupied by a dense matrix of the same order. Non-sparsity of a particular matrix is the

ratio between the expected time to access a random element (path length for quadtrees),

and the expected access time within a dense matrix of the same order. Sparsity is the

difference between one and this non-sparsity measure.

Both density and sparsity are measured on a scale from zero to one. For the conven-

tional row-major, sequential representation of matrices, the l1ensity measure corresponds
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precisely with Duff's. The sparsity measure is uniformly near zero there, consistent with

the observation that this representation offers no special advantage for sparse matrix ma-

nipulation.

Let us consider n x n matrices. Table 1 presents closed-form and asymptotic results for

space, density, expected path length (root to terminal node), and sparsity for the classes of

matrices treated above. In all cases, a matrix is presumed to be completely dense, except

where the indicated pattern requires zeros (or shared storage in the case of symmetry).

Space Density* Expected Path Sparsity*

Dense 1(n 2 - ) 1 lgn + 1 0

Symmetric 1(n + 2)(n- 4) lgn+ 1 0
m. 3_(1 1]g +3 1 1 _ 1

Triangular 1(n + 2)( n - 1) 2 2 2n 2 n

FFT permutation nig + 4n 1 3 lgn g -- + I 1 0.83
2 3 8 n 2 3 3n 2 9n

Random permutation 2 + 0.87n - 3 lgn l6 + 0.87 1 0.37
2 Rn n 2 1gT

Tridiagonal 6n - 2lgn - 5 0 LO1 - + 2 1 - 3.33

Pentadiagonal 8n - 21g n - 9 0 10 1 10 1 - 3.33
Y 3 n T g

Heptadiagonal 11n - 2lgn - 19 0 L + 7 1-

Enneadiagonal 13n - 21gn - 26 0 10 + 100 1- 3.33

Shuffle permutation 3(n- 1) 0 3(1 - 1) 1-

Identity 1 0 1 1 1

Table 1. Measures of patterned and unpatterned matrices as quadtrees.

*Density is accurate within a term of o(n-l). Sparsity is accurate within a term of

0((]gn)- 2 ).

The remarkable entry in the table is for random and FFT permutations-patterned,

which measure out to be neither dense nor sparse, in spite of the fact that they only

contains n non-zeroes of n 2 entries. This is consistent with Duff's observation that pat-

terning is essential to sparseness; the bit-reversal permutation is characterized by its lack

of local patterning! It is fortunate that we already prefer an alternative representation for

permutation matrices that is not dense: as vectors of integers.
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Section 8. Analysis of Matrix Addition

The utility of any measure must be demonstrated in analytical or in experimental

studies of the behavior of algorithms on arguments with various measures. This section

offers an example worst-case analysis of the matrix addition, the simplest matrix algirithm.

The measure of sparsity has not been well studied, however, and more work should be done.

Theorem 4. The sum of two n x n addends, respectively of density d, and d 2 and of

sparsity a, and 82, requires uniprocessor (proportional) time and space within the bounds:

n 2(lgn + 1) max[O,1 - (81 + S2)] = uniprocessor time = n2 (lgn + 1)[1 - max(sl,s2))],

Nn Id, -d21 _ space.u < n2 min(1, di + d2);

and, itself has sparsity and density measures within the bounds,

max(O,sl + S2 - 1) 5 sparsity.um _ 1 - IS1 - S21;

Id, - d21 _ density... < min(1, di + d 2).

Proof: These results follow from the following observations. The sum will be, at worst,

dense:
24 2

space.um SD(lgn) <= in 2 - 1/3 < In

and is no larger than the sum of the space occupied by the addends: shape

spaceum _ space, + space 2 _ SD(lgn)Id, + d2 ).

If one addend is the negative of the other, then the space for the sum, NIL, is zero;

space.um 1Space1 - space21 = 0 = in 2 Id, - d21;

otherwise the sum-tree must, at least contain a root:

spaceuum [space1 - space2 1 + 1

_> (n2 - 1/4)1d, - d21 + 1 > in 2 Id - d2 l

Let (proportional) time be measured by the number of nodes visited in computing the

sum quadtree; only the bases of the trees, common to both addends need be traversed

becaused unshared periphery can be borrowed in the sum. The number of nodes visited
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by an addition has is zero, at best, and and is at least proportional to the path common

to the two addends:

uniprocessortime > 0;

" totalpath, + totalpath 2 - totalpathD;

> n 2 (Ign+ 1)max(,1- (a, + 82)).

It is less than the lesser of the two total paths:

uniprocessortime < min(totalpath,, totalpath 2)

_< n 2 (Ign + 1)(1 - max(sl,5 2)).

The density bounds follow from dividing the bounds from the cases considered in the

space analysis, above, by SD (Ig n). In considering sparsity, we must consider the entire,

unshared path length in the sum:

totalpath.u, > 0;

Sn2 (lg n + 1);

totalpath, - totalpath 2 ;

<totalpath I + totalpath 2.

the first two bounds occur when the sum is NIL or completely dense, respectively. The

second pair of bounds account for the extreme cases where the addends are nearly additive

inverses, or have no coincident non-zero elements. Since, for i = 1, 2:

totalpathi = n 2 (Ign + 1)(1 - si),

max(0,s1+8 2 -1) - -min(l,2-(s+8 2)) S sparsity = 1-totalpath -ISI--

n2 (lgn + 1) - I2.

In general, however, analytical results like these are difficilt and so the utility of these

measures ultimately must be established or denied by experimentation on real data.

Section 9. Conclusions

Measures of space and expected depth of quadtree representations of various kinds

of "sparse" matrices have been presented. All measures exceed those for conventional

representations, in most cases by only a linear factor. Quadtree representation, however,
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offers a facility for process decomposition and scheduling that is unavailable with other

representations, and so the increased costs may easily be recoverable.

These measures have been developed analytically from familiar cases. Their utility

depends upon two kinds of experimental investigation on genuine data. The two questions

to be addressed are whether these measures separate among cases that actually arise in real

data, and whether the performance of real algorithms can be reflected in these measures.

Along with experimental identification of populations of likely patterns, we should

seek analytic results, particularly of average cases because the sparsity measure is based

on an expected value. Results on multiplication and matrix inversion or solving linear

systems, similar to those given here in Section 8, would be quite useful.

While the measures apply as well to data stored sequentially on uniprocessors, it is

particularly important to apply these measures to multiprocessor algorithms because mul-

tiprocessing motivates the quadtree representation that indirectly motivates them. Only

with many processors can the overhead inherent in this representation be recovered.

One might speculate that the widespread use of permutations can cloud these exper-

iments. It is not appropriate to study data after it has been artificially permuted to suit

a particular uniprocessor algorithm or architecture. While it is usual to permute matrices

on uniprocessors in order to bring the data into a desirable pattern, there will be reason

to avoid repeated permutations in a rich multiprocessing environment. There is a very

simple path between memory and processor on a uniprocessor, so it is difficult to foresee

addressing patterns hampering its effective bandwidth.

On multiprocessors, however, one can anticipate that the pattern of many processors

contending for access to many memories can reduce that effective bandwidth in extreme

cases. The simplest parallel algorithm that can raise such contention is an unpatterned,

random, permutation of a vector stored across several memory banks. It is difficult to be-

lieve that each bank will be regularly accessed without delay by other processors accessing

the same portion of the address space. Whether the poor values for permutation matrices

is a reflection of this problem remains to be proved.

If these measures are a harbinger of that difficulty, however, they also point to a

likely alternative to heavy u-e of permutations. Perhaps, it will be desirable to avoid wild

permutations (like the FFT) on parallel processors, in favor of alternatives like factoring
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simpler permutations from partial results. Although the FFT permutation-pattern mea-

sured poorly, it admits a factorization of Shuffles (or Deals) each of which measures out to

be comparatively tame. Perhaps these permutations can be distributed out from a parallel

process to a serial process (like input/output, usually on uniprocessors) where they would

not create bandwidth-consuming, chaotic access. Perhaps, like the permutations within

the fast Fourier transform applied to convolution problems, these lazy permutations might

simplify or cancel themselves by subsequent associativity with other postponed permuta-

tions.
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Appendix

Lemma 1. If b > 1 and lal:< 1 then (1 -a)b 1 ab.

Proof: Compare the Taylor Series expansion of the logarithm of both sides.f

Lemma 2. fa > 1 then (1 - z)a < 1 -ax + (az) 2/2.

Proof: Using Taylor's Series expansion (around zero) with remainder [7, p. 150] we can

write
(1 - - ) a  = 1 -a + a 2 ( 1 - - )a 2

a2 (-

where 0 < c < x. Setting c = 0 proves the lemma. I

Lemma 3. For all x,y _ 0, (1 - z) y > e- zy/(1 - z) .

Proof: It suffices to show that -ln(1 - z) x/(1 - x). But

X 2  X3 X4
-ln(1 -x) = x+2 + '3 + 4

and

X + 2 +X3 +X4+
z =z+z +z +3;4 +...

Straightforward comparison proves the lemma. I

_2y
Lemma 4. For all z,y > 0, (1 - z)z y < eV.

Proof: Take the logarithm of both sides, apply the Taylor Series expansion to the left side

and compare terms. I
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